

Kalmar kommun

Klas Eriksson, Department of parks

Coordinating UV pilot project

Kalmar municipality: ca 72 000 inhabitants

City of Kalmar ca 40 000 inhabitants

Agriculture, forestry, lighter industry, service, tourism

Long coast to Baltic sea (Kalmarsund)

Kalmar

REUSE OF SEWER WATER FOR IRRIGATION

WATERMAN PARTNER MEETING IN LATVIA 1 – 3 APRIL 2025

PILOT PROJECT -DISINFECTION WITH MOBILE UV-PLANT Kalmar municipality

Co-funded by the European Union

sustainable waters WaterMan

Project objective

- "Save water by reusing treated wastewater for irrigation.
- 2. Prepare for a future with less water supply.
- 3. Show possible
 - technical solutions "

Irrigation practice

- Irrigate trees and plants
- Establishing phase 3 years
- 2 500 m³/year
- Before UV-pilot: Stormwater
- Simple and cheap but limited capacity and resilience.
- After UV-pilot: recycled
 wastewater

Distribution of water

- Tractor and tanktrailer
- Application with hosereel
- Watering bags to improve efficiency
- Moisture meters at root level to save water and improve establishing

Present and future situation – water supply for irrigation

- Already experienced several droughts
- Drought situation expected to become worse
- Demand for water increases but supply decreases
- Water becomes more expensive (+ 35 % in 4 years).
- Political decision not to use drinkingwater
- Need for reliable water supply also in drought situations
- Stormwater not a reliable source in severe droughts
- Stormwater can sometimes contain harmful substances

Reliable water supply

- <u>Stormwater:</u> Risk of mismatch between demand and supply, unwanted substances.
- <u>Desalination</u>: Reliable source but, expensive, energy demand is high, complex technique.
- <u>Sewer water:</u> Reliable source but contains harmful substances that must be handled.

Treated sewerwater as water source

- Sewer water "never" dries out
- Risk of negative attitude among our staff and the general public
- Health risks bacteria and virus
- Risks can be managed disinfection
- Salinity might be a problem

Dathär fatatav Okänd författara liconeiarae onligt 00 PV 9A

Disinfection with UV-light

Pros:

- Well proven technique
- Kills most virus and bacteria
- No need to add chemicals
- Easy to handle
- Relatively low cost
- On /off operation saves energy

Cons:

• Particles cause problems

Control of production and quality

- Controlprogram according to EU 2020/741
- Sample once/week laboratory analyses of E-coli
- On-line turbidity monitoring (water colour)
- Education of staff
- Manual on how to handle risks, accidents etc.
- Aim for class B-water quality (E-coli) < 100 cfu/100 ml (Flow 650 l/min)
- Result in operation: Class A-water E-coli < 10 cfu/100 ml (Flow 650 l/min)

Small scale test

Test with small scale equipment and water from Kalmar WWTP

Filter + UV-light:

E-coli

From > 2420 MPN/ 100 ml

To < 10 MPN/ 100 ml

Legal issues

- EU 2020/741 most relevant directive for our production and use
- Some uncertainty how to apply the directive with Swedish law
- Product or waste?
- Waste = less administration, faster approval process, cheaper
- Application describes why, how and when we want to recycle wastewater
- Regulatory authorities argue around legal issues in permit, point out uncertainties but gives green light.
- Conditions in the permit is a copy of our application

Communication Staff, partners, public

Previous experience:

- Be transparent with:
- Why, how, when
- Be open with risks and how to manage/minimize them
- Involve staff early

Plan for communication

- 1. Inform, involve and educate staff
- 2. Parallell dialouge with partner Kalmar Vatten AB (public water/sewer company)
- 3. Listen to questions and worries involve experts and people with experience to explain
- 4. Inform media and general public

What have we done this far?

- Meetings with staff discussed problems and solutions
- Information about project on Website, Social media
- Local papers, radio, TV
- Sign/message on productionsite and tanktrailer
- Staff resource for information answer questions on site
- Open house for staff and stakeholders with plant in operation

Economy

- Low volume, 3 500 m³/year, affects cost per m³
- Investment UV-plant 150 000 EUR, total 200 000 EUR 10 year payoff time
- Production cost: 5,60 EUR/m³
- Financing from EU 80 %, Swedish government, City of Kalmar 20 %
- Cost of water: 0,60 EUR/ m³ (Drinkingwater 2,8 EUR/m³ 2024)
- Higher volume (other areas of use) = lower cost
- Longer technical lifetime = lower cost
- Investment for the future

Concerns we had before start and how it turned out

- Technical problems with on/off operation? Not yet
- Will regrowth of bacteria be a problem? Analysis shows no growth in pipes. equipment or tanktrailer this far (2024)
- Extra work cleaning disinfection plant and tanktrailer? No need
- Will watering bags plug up? No signs of plugging after 1:st season
- How will general public react? Few reactions from citizens this far, the ones we have had are positive

Expectations on the UV-light pilot project – Achieved this far, 1:st season

- Provide a lasting supply of water also in extreme weather Yes
- Save other water resources Yes
- Reliable technique with low need for maintenance Too early to say
- Low energy consumption 1 500 kWh = ca 0,4 kWh/m³ (Includes testrun)
- Deliver class B-water as a minimum Delivers class A-water
- Contribute to a positive attitude for reuse of wastewater Yes
- Hope to be seen as a good example of circular economy work in progress

Plans for 2025

- Install online turbidity meter Done.
- Validation of plant to meet class A-requirements: Ongoing
- Discussions with other parts of the municipality in order to increase use of reused wastewater. Agreement to use an additional 2 000 m³/ year. Legal permission approved.
- PR- information aimed at general public: What we do, why we do it and how. Survey in parks during the summer.

Results from watersamples 2024 season

Typical level of E-Coli before filter and UV-disinfection: > 20 000 / 100 ml

Typical level of E-Coli after filter and UV-disinfection: < 10 / 100 ml

Flowrate 650 l/min (ca 40 m³/h)

Questions?

Co-funded by the European Union

SUSTAINABLE WATERS WaterMan

Interreg Baltic Sea Region

Co-funded by the European Union

Automatic cleaning inside tank, remote control powerreel for easy hose handling

Mobile UV-disinfection plant built in std ISO-container

